1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
//! Ket library code (public for pedagogical reasons).

use float_cmp::ApproxEqUlps;

use complex::Complex;
use gate::Gate;
use matrix::MAX_SIZE;
use registers::ClassicalRegister;

/// A ket describes the state of a quantum register.
///
/// We choose to always use kets as coefficients for linear combinations of
/// the _computational basis_.  A register of width `n` corresponds to a ket
/// of size _2^n_.  Theoretically, the sum of the square coefficient moduli
/// must equal `1`.
///
/// We store the elements (left-aligned) in an array of size `MAX_SIZE`, with
/// the unused slots set to zero.
///
/// See [Wikipedia](https://en.wikipedia.org/wiki/Bra%E2%80%93ket_notation) for
/// more information.
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct Ket {
    size: usize,

    /// The ket's elements, w.r.t. the computational basis.
    pub elements: [Complex; MAX_SIZE],
}

impl Ket {
    /// Construct a new, zero-initialized ket of given size.
    pub fn new(size: usize) -> Ket {
        Ket {
            size: size,
            elements: [Complex::zero(); MAX_SIZE],
        }
    }

    /// Generate a ket from a classical register.
    ///
    /// This ket encodes a single basis vector, and is used for initializing a
    /// quantum register to an initial (classical) state.
    pub fn from_classical(register: &ClassicalRegister) -> Ket {
        let mut ket = Ket::new(Ket::size(register.width()));

        ket.elements[register.state() as usize] = Complex::one();

        ket
    }

    /// Is this structure a valid ket?
    #[allow(unused)]
    pub fn is_valid(&self) -> bool {
        let mut sample_space_sum = 0f64;

        for coefficient in self.elements.iter() {
            sample_space_sum += coefficient.norm_sqr()
        }

        sample_space_sum.approx_eq_ulps(&1.0f64, 10)
    }

    /// Determine whether this ket represents a classically possible state.
    ///
    /// This is true iff. the ket encodes a single basis vector, meaning that
    /// precisely one slot will have value `1`, and all others `0`.
    #[allow(unused)]
    pub fn is_classical(&self) -> bool {
        assert!(self.is_valid());

        let mut zeroes = 0;
        let mut ones = 0;
        let mut others = 0;

        for coefficient in self.elements.iter() {
            if Complex::zero() == *coefficient {
                zeroes += 1;
            } else if Complex::one() == *coefficient {
                ones += 1;
            } else {
                others += 1;
            }
        }

        return 1 == ones && 0 == others;
    }

    /// Compute a ket's size from the register width.
    pub fn size(register_width: usize) -> usize {
        2usize.pow(register_width as u32)
    }

    /// Apply a quantum gate to this ket, mutating its state.
    pub fn apply(&mut self, gate: Gate) {
        self.elements = gate.matrix() * &self.elements;
    }
}

#[test]
fn valid_test() {
    let mut valid = Ket::new(3);
    valid.elements[0] = Complex::zero();
    valid.elements[1] = Complex::zero();
    valid.elements[2] = Complex::one();

    let mut invalid = Ket::new(3);
    invalid.elements[0] = Complex::new(0.5, 0.0);
    invalid.elements[1] = Complex::new(0.0, 0.5);

    assert!(valid.is_valid());
    assert_eq!(false, invalid.is_valid());
}

#[test]
fn classical_test() {
    let sqrt2inv = 2.0f64.sqrt().recip();

    let mut classical = Ket::new(3);
    classical.elements[0] = Complex::zero();
    classical.elements[1] = Complex::zero();
    classical.elements[2] = Complex::one();

    let mut nonclassical1 = Ket::new(2);
    nonclassical1.elements[0] = Complex::new(sqrt2inv, 0.0);
    nonclassical1.elements[1] = Complex::new(0.0, sqrt2inv);

    let mut nonclassical2 = Ket::new(2);
    nonclassical2.elements[0] = Complex::new(0.5, 0.5);
    nonclassical2.elements[1] = Complex::new(0.5, 0.5);

    assert!(classical.is_classical());
    assert_eq!(false, nonclassical1.is_classical());
    assert_eq!(false, nonclassical2.is_classical());
}

#[test]
fn from_classical_test() {
    let r: ClassicalRegister = ClassicalRegister::new(vec![0, 1]);

    let mut expected = Ket::new(4);
    expected.elements[0] = Complex::zero();
    expected.elements[1] = Complex::zero();
    expected.elements[2] = Complex::one();
    expected.elements[3] = Complex::zero();

    assert!(Ket::from_classical(&r).is_classical());
    assert_eq!(expected, Ket::from_classical(&r));
}